Сообщение на тему проценты

Сообщение на тему проценты

ХI муниципальный конкурс исследовательских работ

Проценты и их применение

учащейся 8б класса

МОУ «Еловская СОШ».

Руководитель Халтурина В.В.

1. Из истории происхождения процентов

2. Решение задач на проценты разными способами

3. Решение задач по формуле сложных процентов

4. Применение процентов в жизни

4.1 Исследование бюджета семьи

4.2 Исследование посещения кружков

Почему я выбрала тему «Проценты»?

Проценты – это одна из сложнейших тем математики, и очень многие учащиеся затрудняются или вообще не умеют решать задачи на проценты. А понимание процентов и умение производить процентные расчёты необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни. Проанализировав программу средней школы по математике, пришла к выводу, что по существующим программам решение задач на проценты предусмотрено в основном в 5-6 классах, а в последующих классах данной теме отдана незначительная часть учебного времени. Немецкий физик 18-го столетия Лихтенберг сказал: « То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость». Поэтому я решила и сделала подборку задач из ГИА – 9 классов, из ЕГЭ – 11 классов на банковские проценты, где применяется формула сложных процентов.

Цель исследовательской работы

· Расширение знаний о применении процентных вычислений в задачах и из разных сфер жизни человека;

· Познакомиться с историей возникновения процентов;

· Решать задачи на проценты разными способами;

· Сделать подборку задач из ГИА – 9 кл., ЕГЭ -11кл., решаемые по формуле сложных процентов;

· Исследовать бюджет семьи и посещаемость кружков учащихся моего класса;

· Научиться составлять различные диаграммы и таблицы;

· Поработать в текстовом редакторе;

· Поработать с ресурсами Internet;

· Получить опыт публичного выступления.

1. Из истории происхождения процентов

Слово «процент» происходит от латинского pro centum, что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают целые части чисел в одних и тех же сотых долях. Знак «%» происходит, как полагают, от итальянского слова cento(сто), которое в процентных расчетах часто писалось сокращенно cto. Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto ввел %.

Впервые опубликовал таблицы для расчета процентов в 1584 году Симон Стевин – инженер из города Брюгге (Нидерланды)[1].

Проценты применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).

2. Решение задач на проценты разными способами

При решении задач на проценты в 5 — 6 классах применяют следующие правила:

1. Нахождение процентов от числа:

Чтобы найти проценты от числа нужно, проценты превратить в десятичную дробь и умножить на это число.

2. Нахождение числа по его процентам:

Чтобы найти число по его процентам нужно, проценты превратить в десятичную дробь и число разделить на эту дробь.

3. Нахождение процентного отношения чисел:

Чтобы найти процентное отношение чисел, надо отношение этих чисел умножить на 100.

Задачи с процентами можно решить разными способами: уравнением, составлением таблицы, применяя пропорцию, по действиям, используя правила. Сделала подборку и решила задачи из ЕГЭ – 11, ГИА -9 классов.

Некоторые из них:

Задача 1. (ЕГЭ 2005)

За первый год предприятие увеличило выпуск продукции на 8%, в следующем году выпуск увеличился на 25%. На сколько процентов вырос выпуск продукции по сравнению с первоначальной?

Эту задачу можно решить двумя способами:

1) используя пропорцию

1 способ: Узнаю на сколько увеличился выпуск продукции за первый год.

Пусть: х – начальный выпуск

у – после увеличения на 8%

Теперь, узнаю на сколько увеличился выпуск продукции за второй год.

Пусть: 1.08х – теперь уже начальный выпуск

z – после увеличения на 25%, тогда

В итоге у нас получилось, что выпуск продукции равен 1,35;

Значит выпуск увеличился на 0,35 или на 35%

1) 1,00+0,08=1,08 (узнали выпуск продукции после первого увеличения)

Читайте также:  Как позвонить в бюро кредитных историй бесплатно

2)1,00+0,25=1,25 (узнали выпуск продукции после второго увеличения)

3)1,08*1,25=1,35 (это выпуск продукции после двух увеличений)

4)1,35-1,00=0,35 (увеличения выпуска продукции после двух прибавок)

ОТВЕТ: выпуск продукции по сравнению с первоначальной вырос на 35%.

Задача 2(ЕГЭ 2006)

Вследствие инфляции цены выросли на 150%. Дума потребовала от правительства возвращение цен к прежнему уровню. Для этого цены должны быть уменьшены (на сколько процентов)?

Решим эту задачу с помощью пропорций.

Пусть: х – первоначальная цена

у – цена после повышения цен на 150%

40% — составила первоначальная цена от инфляции, поэтому цены должны быть уменьшены на 60%

ОТВЕТ: цены должны быть уменьшены на 60%.

Тетрадь стоит 40 рублей. Какое наибольшее количество таких тетрадей можно купить на 650 рублей, после понижения на 15%?

Решим эту задачу пропорцией и по действиям.

Пусть: х – на сколько рублей понизилась цена тетрадей.

40 – 100% х = 40*0,15 = 6 (рублей)

1) 40 – 6 = 34 (руб.) стала стоить тетрадь

2) 650 * 34 = 19 (тетрадей) можно купить на 650 рублей

ОТВЕТ: 19 тетрадей можно купить на 650 рублей

Сколько граммов воды надо добавить к 50г раствора, содержащего 8% соли, чтобы получить 5% раствор?

Решим эту задачу уравнением.

Пусть: х — количество воды, которое надо добавить

(50+х ) – новое количество раствора

50* 0,08 – количество соли в исходном растворе

0,05(50+х ) количество соли в новом растворе

Так как количество соли от добавления не изменилось, то оно одинаково в обоих растворах – и в исходном, и в новом.

ОТВЕТ: 30 граммов воды надо добавить, чтобы получить 5% раствор.

Вывод: решила задачу с помощью уравнения.

Свежие грибы по массе содержат 90% воды, а сухие 12%. Сколько получится сухих грибов из 22 кг свежих?

Решение: решим задачу с помощью таблицы и уравнения.

Идёт приём заявок

Подать заявку

Для учеников 1-11 классов и дошкольников

НЕГОСУДАРСТВЕННОЕ НЕКОММЕРЧЕСКОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «АМЕТИСТ»

Школьная научно-практическая конференция

Проценты в нашей жизни.

Авторы: Шермазанов А., 6 класс,

Клемешев М., 6 класс.

Руководитель: Домрачева Е.В.,

История возникновения процента…………………………… …….3

Основные понятия, связанные с процентами …………….………4

Проценты в школьном курсе математики……………………..….18

Проценты в нашей жизни. . 21

Библиогр афический список ………….…………………………….26

Проценты – одно из математических понятий, которые часто встречаются в повседневной жизни. Так, мы часто читаем или слышим, что например, в выборах приняли участи 52,5% избирателей, рейтинг победителя хит-парада равен 75%, промышленной производство сократилось на 11,3%, уровень инфляции 8/% в год, банк начисляет 12% годовых, молоко содержит 3,2% жира, материал содержит 60% хлопка и 40% полиэстера и т.д.

Поэтому выбранная нами тема особенно актуальна. Без понятия «процент» нельзя обойтись ни в бухгалтерском учёте, ни в финансовом анализе, ни в статистике. Чтобы начислить зарплату работнику, нужно знать процент налоговых отчислений; чтобы открыть депозитный счёт в Сбербанке, наши родители интересуются размером процентных начислений на сумму вклада; чтобы знать приблизительный рост цен в будущем году, мы интересуемся процентом инфляции. В торговле понятие «процент» используется наиболее часто: скидки, наценки, уценки, прибыль, сезонные изменения цен на товары, налог на прибыль и т.д. — всё это проценты.

Цель данной работы — показать широту применения процентных вычислений и проанализировать тему «Проценты» в курсе математики.

Для достижения поставленной цели необходимо выполнить следующие задачи:

Проанализировать научно – методическую литературу по теме «Проценты и процентные вычисления».

Научиться применять полученные знания на примерах, с практическим содержанием.

Показать разнообразие задач на проценты в школьном курсе математики.

ИСТОРИЯ ВОЗНИКНОВЕНИЯ ПРОЦЕНТА

Слово «процент» происходит от латинского слова pro centum, что буквально переводится «за сотню», или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целыми. Идея выражения частей целого постоянно в одних и тех же долях, вызванная практическими соображениями, родилась еще в древности у вавилонян, которые пользовались шестидесятеричными дробями. Уже в клинописных таблицах вавилонян содержатся задачи на расчет процентов. До нас дошли составленные вавилонянами таблицы процентов, которые позволяли быстро определить сумму процентных денег. Были известны проценты и в Индии. Индийские математики вычисляли проценты, применив так называемое тройное правило, т. е. пользуясь пропорцией. Они умели производить и более сложные вычисления с применением процентов. Денежные расчеты с процентами были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. Даже римский сенат вынужден был установить максимально допустимый процент, взимаемый с должника, так как некоторые заимодавцы усердствовали в получении процентных денег. От римлян проценты перешли к другим народам.

Читайте также:  Росгосстрах череповец часы работы

В средние века в Европе в связи с широким развитием торговли особо много внимания обращали на умение вычислять проценты. В то время приходилось рассчитывать не только проценты, но и проценты с процентов, т. е. сложные проценты, как называют их в наше время. Отдельные конторы и предприятия для облегчения труда при вычислениях процентов разрабатывали свои особые таблицы, которые составляли коммерческий секрет фирмы.

Впервые опубликовал таблицы для расчета процентов в 1584 году Симон Стевин – инженер из города Брюгге (Нидерланды). Стевин известен замечательным разнообразием научных открытий в том числе – особой записи десятичных дробей.

Долгое время под процентами понимались исключительно прибыль и убыток на каждые 100 рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Нынче процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу).

Знак % происходит, как полагают, от итальянского слова cento (сто), которое в процентных расчетах часто писалось сокращенно cto. Отсюда путем дальнейшего упрощения в скорописи буквы t в наклонную черту произошел современный символ для обозначения процента.

Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto напечатал %.

В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые «промилле» (от латинского pro mille – «с тысячи»), обозначаемые, по аналогии процентов. Изобретение математических знаков и символов значительно облегчило изучение математики и способствовало дальнейшему ее развитию [3].

2. ОСНОВНЫЕ ПОНЯТИЯ, СВЯЗАННЫЕ С ПРОЦЕНТАМИ

2.1. Понятие процента.

Процент – это одна сотая часть от числа.

Процент записывается с помощью знака %.

Чтобы перевести проценты в дробь, нужно убрать знак % и разделить число на 100.

Чтобы перевести десятичную дробь в проценты, нужно дробь умножить на 100 и добавить знак %.

Чтобы перевести обыкновенную дробь в проценты, нужно сначала превратить её в десятичную дробь.

2.2. Перевед дробей в проценты.

Проценты тесно связаны с обыкновенными и десятичными дробями. Поэтому стоит запомнить несколько простых равенств. В повседневной жизни нужно знать о числовой связи дробей и процентов. Так, половина — 50%, четверть — 25%, три четверти — 75%, одна пятая — 20%, а три пятых — 60%.

Обобщение, систематизация и углубление знаний по теме Проценты

Скачать:

Вложение Размер
protsenty.docx 614.65 КБ

Предварительный просмотр:

углубление знаний по

· Рассмо треть ос

ВОЛЧЕНКОВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

УЧЕНИЦА 10 КЛАССА

1. Из истории происхождения процентов

2. Решение задач на проценты разными способами

3.Решение задач из ЕГЭ

4. Решение задач по формуле сложных процентов

5. Применение процентов в жизни

6. Исследование бюджета семьи

8. Список литературы

Долгое время под процентами понимались исключительно прибыль или убыток на каждые сто рублей. Они применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике.

Современная жизнь делает задачи на проценты актуальными, так как сфера практического приложения процентных расчетов расширяется. Вопросы инфляции, повышение цен, рост стоимости акций, снижение покупательской способности касаются каждого человека в нашем обществе. Планирование семейного бюджета, выгодного вложения денег в банки, невозможны без умения производить несложные процентные вычисления.

Сами проценты не дают экономического развития, но их знание помогает в развитии практических способностей, а также умение решать экономические задачи. Обдуманное изучение процентов может способствовать развитию таких навыков как экономичность, расчетливость.

В вариантах выпускных экзаменов встречаются задачи на проценты, и эти задачи часто вызывают затруднения .

Почему я выбрала тему «Проценты».

Понимание процентов и умение производить процентные расчёты, необходимы для каждого человека. Прикладное значение этой темы очень велико и затрагивает финансовую, экономическую, демографическую и другие сферы нашей жизни. Изучение процента продиктовано самой жизнью. Умение выполнять процентные вычисления и расчеты необходимо каждому человеку, так как с процентами мы сталкиваемся в повседневной жизни. По программе решение задач на проценты предусмотрено в основном в 5-6 классах, а в последующих классах данной теме отдана незначительная часть учебного времени. Немецкий физик 18-го столетия Лихтенберг сказал: « То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете снова воспользоваться, когда в том возникнет необходимость». Поэтому я решила обратиться к теме «Проценты» так как мне в следующем году сдавать ЕГЭ , где есть задачи на проценты.

Читайте также:  Банкоматы втб в балашихе адреса

1. Из истории происхождения процентов

Слово «процент» происходит от латинскогоpro centum , что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так как они выражают целые части чисел в одних и тех же сотых долях. Знак «%» происходит, как полагают, от итальянского слова cento (сто),которое в процентных расчетах часто писалось сокращенно cto. Существует и другая версия возникновения этого знака. Предполагается, что этот знак произошел в результате нелепой опечатки, совершенной наборщиком. В 1685 году в Париже была опубликована книга – руководство по коммерческой арифметике, где по ошибке наборщик вместо cto ввел %. Впервые опубликовал таблицы для расчета процентов в 1584 году Симон Стевин – инженер из города Брюгге(Нидерланды).Проценты применялись только в торговых и денежных сделках. Затем область их применения расширилась, проценты встречаются в хозяйственных и финансовых расчетах, статистике, науке и технике. Ныне процент-это частный вид десятичных дробей, сотая доля для целого ( принимаемого за единицу)

Цель исследовательской работы

Расширение знаний в применении процентных вычислений, в задачах ЕГЭ и из разных сфер жизни человека;

Познакомиться с историей возникновения процентов;

Решать задачи на проценты разными способами;

Сделать подборку задач из ЕГЭ — 11кл,

Решить задачи по формуле сложных процентов;

Исследовать бюджет семьи

Научиться составлять различные диаграммы и таблицы;

Поработать в текстовом редакторе;

Поработать с ресурсами Internet;

Получить опыт публичного выступления.

Брать ссуду в банке, купить в кредит? А может выгоднее накопить деньги для покупки дорогостоящей вещи? Что бы ответить на эти вопросы требуется уметь решать задачи на проценты

Для успешного решения задач на проценты полезно:

знать определение процента: 1% = 0,01 = 1/100;

Р % = 0,01Р = Р / 100;

уметь переводить проценты в десятичную или обыкновенную дробь;

Основные типы задач на проценты

Нахождение процентов данного числа

Нахождение числа по его процентам.

Нахождение процентного отношения чисел.

Чтобы найти процент от числа, надо процент выразить дробью, а затем найти дробь от данного числа.

Задача.1 В семенах сои содержится 20 % масла. Сколько масла содержится в 700 кг сои?

20 % = 0,2, получаем задачу на нахождение дроби от числа. А такие задачи решают умножением.

1) 20 % = 0,2; 2) 700 х 0,2 = 140 (кг).

Задача2. В школе 200 учащихся, из них 45% учатся на “4” и “5”.

Сколько школьников учатся на “4” и "5"?

45%=0.45 перевод % в десятичную дробь

Решение задач такого типа можно записать формулой a=b * p/100

Нахождение числа по его процентам.

Чтобы найти число по данным его процентам, надо выразить проценты в виде дроби и решить задачу на нахождение числа по данной его дроби

Задача1. Из хлопка-сырца получается 24 % волокна. Сколько надо взять хлопка-сырца, чтобы получить 480 кг волокна? :

1) 24 % = 0,24; 2) 480 : 0,24 = 2000 (кг) = 2 (т) Ответ: 2т.

Задача2. Найти число, 4 % которого, равны 8.

4 % = 0,04, 8 : 0,04 = 800 : 4 = 200 или 8:4*100=200. Ответ: 200

Решение задач такого типа можно записать формулой b=a*100/p

Процентное отношение двух чисел.

Чтобы найти процентное отношение двух чисел, надо найти отношение этих чисел и выразить его в процентах.

Задача 1. Надо вспахать участок поля в 500 га. В первый день вспахали 150 га. Сколько процентов составляет вспаханный участок от всего участка?

150/500 = 3/10 = 0,3 = 30% Ответ 30%

На сколько процентов 10 больше 6? 2. На сколько процентов 6 меньше 10?

1. ((10 — 6).100%)/6 = 66 2/3 %

2. ((10 — 6).100%)/10 = 40% Ответ: 662/3%; 40%

Решение задач этого типа можно записать формулой P= a*100/ b

2. Решение задач на проценты разными способами

Решать задачи на проценты можно разными способами: уравнением, составлением таблиц, применяя пропорцию, по действиям, используя правила и формулы.

Задача 1.В колбе 140 г. 10% раствора марганцовки. В нее долили 60г. 30 % раствора марганцовки. Определите процентное содержание марганцовки в полученном растворе.

Ссылка на основную публикацию
Adblock detector